Homotopy type of the space of finite propagation unitary operators on $\mathbb{Z}$

نویسندگان

چکیده

The index theory for the space of finite propagation unitary operators was developed by Gross, Nesme, Vogts and Werner from viewpoint quantum walks in mathematical physics. In particular, they proved that $\pi_0$ is determined index. However, nothing known about higher homotopy groups. this article, we describe type on Hilbert square summable $\mathbb{C}$-valued $\mathbb{Z}$-sequences, so can determine its We also study (end-)periodic operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

Unitary Operators on the Document Space

When people search for documents, they eventually want content, not words. Hence, search engines should relate documents more by their underlying concepts than by the words they contain. One promising technique to do so is Latent Semantic Indexing (LSI). LSI dramatically reduces the dimension of the document space by mapping it into a space spanned by conceptual indices. Empirically, the number...

متن کامل

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2023

ISSN: ['1532-0073', '1532-0081']

DOI: https://doi.org/10.4310/hha.2023.v25.n1.a20